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a b s t r a c t

Along with existing numerical process models describing the wind–wave interaction, the relatively

recent development in the area of machine learning make the so-called data-driven models more and

more popular. This paper presents a number of data-driven models for wind–wave process at the

Caspian Sea. The problem associated with these models is to forecast significant wave heights for

several hours ahead using buoy measurements. Models are based on artificial neural network (ANN)

and instance-based learning (IBL) .To capture the wind–wave relationship at measurement sites, these

models use the existing past time data describing the phenomenon in question. Three feed-forward

ANN models have been built for time horizon of 1, 3 and 6 h with different inputs. The relevant inputs

are selected by analyzing the average mutual information (AMI). The inputs consist of priori knowledge

of wind and significant wave height. The other six models are based on IBL method for the same forecast

horizons. Weighted k-nearest neighbors (k-NN) and locally weighted regression (LWR) with Gaussian

kernel were used. In IBL-based models, forecast is made directly by combining instances from the

training data that are close (in the input space) to the new incoming input vector. These methods are

applied to two sets of data at the Caspian Sea. Experiments show that the ANNs yield slightly better

agreement with the measured data than IBL. ANNs can also predict extreme wave conditions better than

the other existing methods.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Wave height forecasts are typically made based on the
numerical wave models. There are several types of such models
that can provide wave information for regional or global studies.
In these models, the sea state can be described with a wave
spectrum, which represents the wave energy density per
frequency and direction. By means of energy-balance equation
the evolution of wave spectrum can be computed in space and
time and hence wave forecasting could be obtained in the region
of study. Presently WAM (The WADMI group, 1988), Wave Watch
III (Tolman, 1999) and SWAN (Booij et al., 1999) are well-known
mathematical-based models which are used in the most meteor-
ological centers. When such models are used, preparation of
meteorological data and heavy computer processing is a challen-
ging job.

Along with numerous existing physical models, the relatively
recent development in the area of machine learning makes the so-
ll rights reserved.
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called data-driven models more and more popular. These methods
are based on the analysis of all data characterizing the system
under study to find an unknown mapping or dependencies
between the systems input and output from the available data.
When the observed wave data are available, these methods can be
applied with relatively simple set up. There are many applications
of machine learning in water-related modeling, including some in
wind–wave modeling. Solomatine (2005) and Solomatine and
Ostfeld (2008) reviewed various aspects of data-driven modeling
and computational intelligence methods in water-related issues.
Jain and Deo (2006) reviewed the application of ANN in several
disciplines in ocean engineering. Mynett (1999) presented some
applications of ANN and self-organizing feature maps (SOFM).
Zijderveld (2003) investigated some neural network applications
for prediction and classification tasks in a hydro-informatics
context. Solomatine et al. (2007) compared instance-based
learning (IBL) to other data-driven models in hydrological
forecasting. Bhattacharya et al. (2003) applied neural network in
the reconstruction of missing wave data in sedimentation
modeling. Puca et al. (2001) designed a neural network approach
to the problem of recovering lost data in a network of marine
buoys. The potential of ANN to provide accurate estimates of
nonlinear interactions for wind–wave spectra by direct mapping
is considered by Tolman et al. (2005). Kazeminezhad et al. (2005)
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Fig. 1. Location of measurement sites at Caspian Sea: (A) shallow water, and (B)

deep water.
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proposed a fuzzy logic methodology to determine the wave
parameters from wind speed and fetch length. Also Ozger and
Zekai (2007) investigated the relation between wind speed and
wave characteristics by fuzzy logic approach. Solomatine et al.
(2001) used chaos theory (nonlinear dynamics) and ANN in
predicting surge water levels in the North Sea based on the 5 years
of the collected data on water level, wind and air pressure at
several off-shore stations. Vaziri (1997) predicted the Caspian sea
surface water level by ANN and ARIMA models.

Regarding forecasting wave height at one location, some latest
works in wave forecasting is pertained to Deo and Naidu (1999),
Deo et al. (2001), Agrawal and Deo (2002), Zamani and Azimian
(2004); Makarynskyy (2004), and Mandal and Prabaharan (2006).
In the aforementioned works various type of neural networks
such as feed-forward or recurrent networks are used. These works
are used in different observation areas without considering the
effect of wind direction in wind–wave forecasting. Comparison of
results based on the work carried out by Mandal and Prabaharan
(2006) showed the correlation coefficient of 0.95, 0.90 and 0.87
for 3 h, average 6 h and average 12 h wave forecasting, respec-
tively. Also Ozger and Zekai (2007) reported values of 0.97, 0.96,
0.89 and 0.80 for 1, 3, 6 and 12 h forecasting based on fuzzy
interference system.

In the present study, ANN and IBL methods are used to forecast
significant wave heights for several hours ahead using
buoy measurements in Caspian Sea. First, a brief explanation of
ANN and IBL is given. Following these, some characteristics
of measurements, their duration and locations are specified.
Some considerations regarding selection of inputs of models
are also addressed, together with the data transformations
used to better account for the effect of wind speed and wind
direction. Forecasting models are described, the modeling results
are presented and discussed, and finally, the conclusions are
drawn.
2. Study area

Two sets of meteorological and wave data have been used in
this study. Wind and wave data was collected by a 3-m diameter
discuss shape buoy. This buoy deployed by Khazar Exploration
and Production COmpany (KEPCO) at two different locations (A)
and (B) situated in the southern part of the Caspian Sea (Fig. 1).
Location (A) is near the beach but location (B) is far from the coast.
The water depth at these locations is 15 and 800 m, respectively.
The period of data collection at location (A) is from November 20,
2005 to April 9, 2006 and at location (B) is from October 11, 2006
to May 2, 2007. Fortunately during these periods buoy collected
data continuously and without any gaps in transmitting of data.
Wave data was collected for 20 min at 1 h intervals at a sampling
frequency of 2 Hz. Wind data was also collected for 10 min at 1 h
intervals at a sampling frequency of 2 Hz. Fig. 2 shows a sample
time series plot of wave height, wind speed and wind direction at
site A.
3. Machine learning

A machine learning method is an algorithm that enables
the user to estimate an unknown mapping rule between a
system’s input and output data (Aha et al., 1991). By data we
understand the known samples each being a combination
of the input vector and the corresponding outputs. Once
such a dependency is discovered it can be used to predict the
future system output from the known input values. Suppose
that K instances represented by /Xi, YiS where Xi and Yi typically
contain multidimensional vectors in Rp and Rq, respectively
(p is number of inputs and q is number of outputs). Now
the objective is to build a function (‘mapping’ or ‘model’) similar
to Y ¼ f(X) for finding functional dependency of inputs and
outputs. In our study q ¼ 1 and the model to build takes the
form: y ¼ f(X).

Various kinds of machine learning methods can be used for
building the models. Among them, in this study artificial neural
network (ANN) and IBL including weighted k-nearest neighbors
(k-NN) and locally weighted regression (LWR) with Gaussian
kernel are used. Detailed information about above methods
can be found in Haykin (1999) and Aha et al. (1991). In ANN the
method is to learn the function f explicitly by training a network
of neurons. ANN includes a set of weights, which should be
determined by training optimization process aimed at minimizing
the model error. After that, the model is used for prediction
and there is no need to retain the training data. In contrast IBL
is a memory-based (analog) method and it is a kind of non-
parametric approach which retains the training data and uses it at
each time which prediction needs to be made. In fact, in IBL the
training data is stored in memory and when a new vector
presented a set of similar related instances reviewed from
memory and their corresponding outputs are used to predict the
output for a new query vector. The similar related instances to
new query can be classified by some distance metric such as
Euclidean distance. Consider the k-nearest neighboring points of
the query. It is possible to construct the local model (or
approximation) to the modeled function that applies well near
in the immediate neighborhood of the new query instance.
It can be done by weighted k-NN or LWR algorithms. In weighted
k-nearest point (Xi) according to their distance d(Xq, Xi) to the
query point (Xq) but in LWR the regression model is built on
k-nearest instances, which are assigned weights according to their
distance to the query instance. The predicted value for Xq is
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Fig. 2. Hourly time series plot of: (a) significant wave height, (b) wind speed, (c) wind direction, at location (A) for duration of 20 November 2005 till 9 April 2006.
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calculated as follows:

f ðXqÞ ¼
Sk

i¼1wif ðXiÞ

Sk
i¼1wi

(1)

where wi is a function of distance d with the following common
weight functions:

wi ¼ 1� dðXq;XiÞ ðLinearÞ (2)

wi ¼ 1=dðXq;XiÞ ðinverseÞ (3)

wi ¼ 1=dðXq;XiÞ
2
ðInverse-squareÞ (4)

In LWR the weights are determined from the minimization of
following distance-weighted square error:

EðXqÞ ¼ ð1=2Þ
Xk

i¼1

ðyi � f ðXÞÞðKðdÞÞ (5)

with yi being the target output, f(X) is regression function and K is
Gaussian kernel function with the following definition:

KðdÞ ¼ exp ð�dðXq;XiÞ
2
Þ (6)

Weight function should be maximum at zero distance and the
function should decay smoothly as distance increase. Fedrov et al.
(1993) addressed the issue of choosing weighting functions.
4. Determination of the inputs

One of the important steps in using models is determination of
the adequate input and output variables. Usually, not all the input
variables will be equally informative since some may be
correlated, noisy or have no significant relationship with the
output variables being modeled. Bowden et al. (2005) reviewed
some methods of input determination for neural network models
in water resource applications. For selecting appropriate inputs
methods based on linear cross-correlation are often employed.
The major disadvantage associated with using cross-correlation is
that it is only able to detect linear dependence between two
variables. Another method used in the present work is known as
average mutual information (AMI) method. AMI measures the
dependence between the two random variables. An AMI is
calculated for two random variables A and B as follow (Abebe
and Price, 2004):

AMIðA;BÞ ¼
XN

i;j

PA;Bðai; bjÞ � log2

PA;Bðai; bjÞ

PAðaiÞPBðbjÞ

� �
(7)

where ai and bj are the ith or jth bivariate sample pair in a sample
size N and PA(ai), PB(bj) and PA,B(ai, bj) are the respective univariate
and joint probability densities estimated at the sample data
points. In order to calculate the mutual information between A

and B, it is necessary to estimate joint probability density function
and marginal density functions of A and B. Probabilities are
estimated by the corresponding frequencies. Numerical axis for
each variable is discretized and all values falling into each bin are
given the same frequency value. Histogram and Kernel methods
are widespread to estimate probability density functions (Scott,
1992).

Intuitively, mutual information measures the information that
A and B share. It measures how much knowing about one of these
variables reduces our uncertainty about the other variable. For
two statistically independent random variables the AMI score in
Eq. (7) is zero. Also if the random variables are strongly related,
the AMI score would take a high value. The AMI score of
wind–wave at measurement sites were computed for different
lag hours indicated in Fig. 3. From this figure it is clear that the
value of AMI at location (B) is higher than that at location (A). This
means that more substantial information about the wave data is
included in the wind field at location (B). On the other hand due to
the boundary and sea bed effects at location (A) which is close to
the coast, the wave system will be affected by other parameters
which are not included in the wind information. The same can be
inferred from Fig. 4 and AMI value of wave–wave at both
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Fig. 3. Wind–wave average mutual information at locations (A) and (B).
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Fig. 4. Wave–wave average mutual information at locations (A) and (B).
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locations. In addition, analysis of AMI has been conducted also for
the following pairs of variables:
�
 wind speed difference and significant wave height

�
 wind speed difference and wave height difference

�
 wind speed and wave height difference
However, we found that AMI for the latter pairs was quite low
and did not consider them as the inputs for the models. Another
problem to address was to take into account the specifics of the
method used to measure wind. The buoys measure wind speed at
3–5 m above the sea level. However, the standard 10 m reference
level should be used. The following ð17Þth rule is used as an
approximation for level adjustment (US Army, 2003):

U10 ¼ Uz
10

z

� �1=7

(8)

where U10 is wind velocity at 10 m height from the sea level and Uz

is wind velocity at elevation z. In second stage in order to transfer
the wind speed U10 to friction velocity Un the transformation (9)
has been used. It could be shown that by means of this
transformation the range of friction velocity variations would be
less than the wind speed variations. In actual computation, U10 is
converted to the friction velocituy Un with:

U2
� ¼ CDU2

10 (9)

where CD is the wind drag coefficient. Later the effect of this
transformation on the result will be shown. From WAM Cycle III
and SWAN models, the value of CD is determined with an
expression due to Wu (1982):

CD ¼
1:2875� 10�3 if U10o7:5 m=s

ð0:8þ 0:065� U10Þ � 10�3 if U10X7:5 m=s

(
(10)

Yet another consideration was taken into account. Wind is a
vector and it has direction as well as magnitude. If measured in
degrees, there would be a discontinuity in wind direction around
the north direction. For example both 01 and 3601 show north
direction. Also directions of 31 and 3571 are quite close to each
other, but differ numerically. To account for wind direction the
encoding method used for example in Bhattacharya et al. (2003)
would be used as follows:

Y ¼
1� ðC=180Þ if 0�pCp180�

ðC� 180Þ=180 if 180�oCo360�

(
(11)

where C is wind direction in degree and Y is encoded wind
direction between 0 and 1.
5. Models setup and training

5.1. Models structure

The problem associated with the wind–wave forecasting is to
forecast wave height several hours ahead with respect to the
previous information of the system. The available information can
be wind speed vector and a priori knowledge of wave height. The
AMI helps to find out how much information about the future
wave is available from the past wind and wave data. The lag time
corresponding to maximum AMI from Fig. 3 is about 4 h. Also the
AMI between wind and wave is close to maximum value for lag
times between 1 and 7 h. Although there is no maximum point for
AMI of wave and wave (see Fig. 4) but due to high AMI values at
time t and t�1, they can be used for model building. The AMI-
based analysis does not directly lead to identifying the exact
relationship between wind and waves but it helps to bring in the
relevant physical variables, properly lagged, into DDM models.
Using AMI analysis to assess dependencies between variables and
the lag time, the following local models were built:

HANNðt þ 1Þ ¼ f 1ðUt ;Ut�1;Ut�2;Ut�3;Ut�4;Ut�5;Ut�6,

Ut�7;Y;Ht ;Ht�1Þ (12)

HANNðt þ 3Þ ¼ f 2ðUt ;Ut�1;Ut�2;Ut�3;Ut�4;Ut�5;Y;Ht ;Ht�1Þ (13)

HANNðt þ 6Þ ¼ f 3ðUt ;Ut�1;Ut�2;Y;Ht ;Ht�1Þ (14)

where t is discretized time, H is the wave height, f is the model’s
function, U is wind speed and Y is average wind direction for time
span which has been included in the model. These models are
global ANN. They are trained using the full set of input data.
Eqs. (13) and (14) obtained from Eq. (12) with changing time
index of wind speed from t to t+2 and t+5, respectively. Also time
indexes greater than time t should be ignored at the right-hand
side of the equations.
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The following instance-based models were built as well:

HkNNðt þ 1Þ ) f 4ð� � �Þ (15)

HkNNðt þ 3Þ ) f 5ð� � �Þ (16)

HkNNðt þ 6Þ ) f 6ð� � �Þ (17)

HLWRðt þ 1Þ ) f 7ð� � �Þ (18)

HLWRðt þ 3Þ ) f 8ð� � �Þ (19)

HLWRðt þ 6Þ ) f 9ð� � �Þ (20)

In Eqs. (15)–(20) the notation ð� � �Þ means the same inputs as
ANN models for each forecast time horizon. The above notation
has been chosen to distinguish between ANN and other models.
These models do not construct an approximation designed to
perform well over the entire instance space but use only the
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Fig. 5. (a) Forecast of model f1 for location (A), (b) forecast of mode
neighbors of the new input vector for forecasting and in this sense
can be called ‘‘local’’ models.

It is possible to define models which map wind–wave data to
higher forecast horizons. But due to the short memory of local
wind–wave process as indicated by AMI analysis, up to 6 h
forecast has been considered in this study.
5.2. Data division

The way the data is divided into training and test sets have to
ensure their approximate statistical similarity. However, another
criterion is to try to preserve the contiguousness of these sets. A
compromise approach has been chosen: the data was divided into
two parts in such a way that both blocks of data would have
extreme events of similar nature. For all the experiments the
latest 400 observation were selected for testing the models, and
the rest of the data was used for their training—this ensured both
blocks have at least one extreme event for both locations. Still, this
00 250 300 350 400
n time (hour)

Observed,station−A
6 hour forecast
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l f2 for location (A), and (c) forecast of model f3 for location (A).
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has not ensured very similar statistical properties of the two-data
subsets because of seasonal effect. For example most of training
set in location (A) belongs to winter while the test period is in the
spring (see Fig. 2). This situation has implications on the way
models are trained.

5.3. Models training

For evaluation of models f1–f3 three-layer feed-forward
ANN with sigmoid transfer function for hidden layer and linear
transfer function for output layer have been selected. The network
with five neurons in the hidden layer appeared to be the best
model for both the locations. Since the statistics of training and
test sets are different, the networks are trained by the so-called
method of ‘‘n-folding’’. In this method n different sets of training-
validation data should be prepared based on the original training
data with the length of Nt. In each set (Nt/n) number of data
vectors is used for validation and (1�1/n)Nt of them for training. n

models are built, and for each model training and validation sets
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Fig. 6. (a) Forecast of model f1 for location (B), (b) forecast of mode
are different. For model i the validation set comprises (Nt/n)
vectors starting from vectorNt � ði� 1Þ=nþ 1, and the rest of the
data set is used for training. The stopping criteria were one of the
following:
�

00
n ti

H
 (m

)

l f2 f
minimum error in validation set

�
 mean square error in training reaching threshold of 0.0001

�
 or the number of epochs reaching 2500

6. Results

The performance of models can be measured using various
metrics. In this study the correlation coefficient (r), the root mean
square error (RMSE) and the scatter index (SI) are used:

r ¼
SN

i¼1ðoi � oÞðyi � yÞ

SN
i¼1ðoi � oÞ2SN

i¼1ðyi � yÞ2
h i1=2

(21)
250 300 350 400
me (hour)
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or location (B), and (c) forecast of model f3 for location (B).
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN

i¼1ðoi � yiÞ
2

N

s
(22)

SI ¼
RMSE

ō
(23)
where oi is an observed value at ith time step, yi is a forecasted
value at the same moment of time, N is the number of time steps,
o is the mean value of observed data, and y is the mean value of
forecasted values.

The outputs of models f1–f3 are shown in Figs. 5(a)–(c)
and 6(a)–(c). Their error statistics are explained later. These
figures show reasonable accuracy of ANN models in most cases
except for the maximum value given by model f3 in shallow water.
Generally speaking the results obtained from ANN at site (B) agree
well with the measured data and coincides with our expectation
after AMI analysis.

For some of the models presented in Section 5 the effect of
wind transformation from the common wind velocity to the shear
wind velocity has been examined as well. The input variable U

was treated in two different ways, as the actual wind velocity U

and as the shear velocityUn. This transformation simply plays the
role of scaling. Scaled data covers the same range for all variables
and therefore errors in each variable contribute in the same
proportion to changes into the network weights. The variation of
shear velocity is shown in Fig. 7 for location A.

Fig. 8 illustrates the output of model f3 for the two locations
where the input variable U used in the model formulation is the
actual wind velocity. Comparison of model outputs for these runs
show that the sensitivity of model to the actual wind speed is
more than that when the shear velocity Un is used. Also the model
with Un as input shows a better behavior in the region of extreme
event. See Figs. 5c and 6c where the forecast horizon of 6 h is
shown.

The effect of this transformation could be also seen when IBL
method is used. Fig. 9 illustrates the output of model f6 for the two
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different options, one with the wind velocity and the other one
with the shear velocity. Errors are obviously found in Fig. 9 at
every peak. Generally speaking, this is due to the effect of number
of neighboring points in IBL method and lack of similarity of
samples in memory with the predicted points. In spite of errors in
predictions, in this experiment, the statistics of IBL method with
shear velocity is better than real wind according to Table 1.
Simultaneous comparison of model outputs for these runs show
that another feature. Usually model’s responses to a sudden input
change are slow, but in the second run the highest peak is
Table 1
Two different runs of f6

Wind input Shear input

r RMSE (m) SI r RMSE (m) SI

0.901 0.316 0.307 0.951 0.201 0.242

0 2 4 6 8 10 12 14
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Fig. 10. Correlation coefficients and root mean square error for different weighing

functions and different number of neighboring for model f6 (k-NN) and model f9

(LWR).
forecasted well and the variation of wave height is closer to the
real observed data.

Most IBL models can be optimized with respect to their
parameters and the weighting functions used. This can be done by
running the models and comparing their performance on cross-
validation set. Since the available data was limited, such
optimization for the presented cases cannot be properly done,
so the results obtained for the test set instead. Fig. 10 shows the
correlation coefficient r and RMSE of the selected models in terms
of the number of nearest neighboring points and different
weighting functions. All the IBL methods will obviously show
the same value of r and RMSE in case of using one nearest
neighbor. Increasing number of neighbors gives the chance to the
points located further away from the new data vector to influence
the result. With the increase of the number of neighbors, the
forecast will tend to be closer and closer to the global average, and
RMSE will be decreasing so that the detailed information about
the signals will be lost. For a small number of neighboring points
the forecast will be too noisy. After experiments a compromise
number of five neighbors was adopted to be used in all IBL
models, and the obtained results are compared with those
obtained with ANN. (More research however, would be desirable
into the proper optimization of IBL models with respect to the
number of neighbors.)

Verification statistics of ANN and IBL method indicated in
Table 2. IBL method shows better performance for 1 h forecast. In
IBL pervious training data are used to predict next step data in a
recurrent way, these predicted data would achieve better than
ANN when only trained weights and biases are used for future
prediction. Mostly this is in agreement with statistics of 1 h
forecast. In another way for one step ahead, the latest incoming
data set may be considered as one of the high correlated
neighboring points. For higher forecast horizon, there is no
guarantee for latest data set to be considered as neighboring
point. Also there is no guarantee to find suitable nearest points in
the memory with limited number of similar events. For this
Table 2
Verification statistics of ANN and IBL method

Model Location A Location B

r RMSE (m) SI r RMSE (m) SI

f1 0.996 0.038 0.083 0.997 0.042 0.067

f2 0.991 0.032 0.070 0.992 0.077 0.094

f3 0.946 0.081 0.172 0.980 0.129 0.150

f4 0.996 0.022 0.049 0.998 0.039 0.047

f5 0.975 0.056 0.124 0.990 0.092 0.111

f6 0.879 0.122 0.269 0.951 0.201 0.242

f7 0.996 0.023 0.050 0.998 0.091 0.049

f8 0.974 0.057 0.125 0.989 0.093 0.112

f9 0.882 0.121 0.267 0.956 0.200 0.241

Table 3
Maximum errors between forecasted and observed wave heights

Model Location A (m) Location B (m)

f1 0.07 0.10

f2 0.15 0.22

f3 0.32 0.61

f4 0.07 0.10

f5 0.25 0.31

f6 0.64 0.64

f7 0.07 0.10

f8 0.24 0.31

f9 0.64 0.63
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Table 4
Verification of wave height forecasts with other methods

Reference +T r RMSE SI Method Inputs

Ozger and Zekai (2007) +1 0.974 0.282 0.110 Fuzzy logic approach Wind speed and wave height

+3 0.960 0.347 0.135

+6 0.899 0.541 0.211

+12 0.800 0.741 0.289

Ozger and Zekai (2007) +1 0.972 0.293 0.114 ARMAX Wind speed and wave height

+3 0.925 0.471 0.184

+6 0.842 0.666 0.260

+12 0.690 0.895 0.349

Mandal and Prabaharan (2006) +3 0.95 – – NARX Wave height

+6 0.90 – –

+12 0.87 – –

+24 0.73 – –

Zamani and Azimian (2004) +3 0.911 0.16 – MLP Wave height

+6 0.889 0.187 –

+12 0.585 0.311 –

+24 0.356 0.352 –
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reason IBL shows less performance for higher forecast horizons
than ANN. Higher correlation of all models in deep water can be
inferred from Table 2 which coincides with our expectation from
AMI analysis. Also the lower scatter index in deep water can be
seen form the same table. On the other hand, analyzing wave
height time series of location B reveals that the average wave
height for location B is more than the average wave height at
location A (see the range of vertical axis in Fig. 8 for both
locations). With the same number of test points (400) and lower
scatter index, Eq. (22) results in a higher RMSE error for location B.
Table 3 summarize the maximum errors between forecasted and
observed wave heights during the test period. The increase of the
forecasting time intervals results in an increase on the error in
forecasting wave height. One of the ways of improving such
predictions would be collecting more data at the distant locations
that have high impact on the wave climate at the considered
locations, and determining the proper lags for all observations
used in the predictions.

Some other statistical methods were used by other researchers
for various case studies. It is not possible to make a detailed
comparison between different methods as used with other
researchers. However, summary of statistics of various methods
is presented in Table 4 for reference. Comparison of the results
presented in Tables 2 and 4 reveals that both ANN and IBL models
as defined in this work favorably compare to the other published
results.
7. Conclusion

This presented results show how the data-driven (machine
learning) models could be effectively used to perform the short-
term wind–wave forecasting. A number of models were built and
their inputs were selected by analyzing the AMI that gave some
insight into the dependency of input and output parameters in the
measurement locations. The effect of transforming the wind speed
to shear velocity was investigated. Comparison of the statistical
results obtained from the models using wind speed with the
results of the models using the shear velocity showed that the
performances of the latter models are better. The possibility of
using a global model and also a local model was investigated too.
The selected case studies at shallow water (location A) and deep
water (location B) showed that all models perform much better in
deep waters. Also comparison of statistics of IBL with ANN
showed that IBL appears to be more accurate and robust for one
step forecasting. For multi-step forecasting a global ANN model
showed higher performance both in terms of the correlation
coefficient and RMSE. A significant difference between the results
of k-NN and LWR in this study was not observed.

The presented research was aimed at investigating the
possibilities of the data-driven methods. The results obtained
could have been better if we would have had more data for the
considered locations, and especially if there would be data
available for the other locations in the Caspian Sea. This would
have allowed for building more accurate models with the higher
forecasting horizon. Obviously, as the collected data set increases,
the accuracy of the data-driven models will improve, and the
intra- and inter-yearly variations could then be studied.

An interesting research direction is combination of machine
learning methods like ANN and IBL with the methods developed
in the framework of chaos theory (for example, Solomatine et al.,
2001) and combining the data-driven methods with the physically
based hydrodynamic models.
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