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There are successful experiences with the application of ANN and ensemble-based data

assimilation methods in the field of flood forecasting and estuary flow. In the present work, the

combination of dynamic Artificial Neural Network and Ensemble Kalman Filter (EnKF) is applied on

wind-wave data. ANN is used for the time propagation mechanism that governs the time

evolution of the system state. The system state consists of the significant wave height that is

affected by wind speed and wind direction. The relevant inputs are selected by analysing the

Average Mutual Information. By help of the observations, the EnKF will correct the output of the

ANN to find the best estimate of the wave height. A combination of ANN with EnKF acts as an

output correction scheme. To deal with the time-delayed states, the extended state vector is

taken and the dynamic equation of the extended state vector is used in EnKF. Application of the

proposed scheme is examined by using five-month hourly buoy measurement at the Caspian Sea

and several model runs with different assimilation–forecast cycles.The coefficient of performance

and root mean square error are used to access performance of the method.

Key words | assimilation forecast cycle, data assimilation, dynamic neural network, ensemble

Kalman filter, wind-waves

INTRODUCTION

There are some parametric approaches to model the

process based on data. These are data-driven models.

These modeling techniques are mainly based on data,

either gained by measuring processes or simulation using

physically based models. In traditional approaches of data-

driven modeling, relatively simple linear or nonlinear

regression methods are used for assessment of the system

relations. But in many disciplines in ocean engineering and

hydrology, an increasing trend is to use Artificial Neural

Network (ANN). These methods are based on the analysis

of all data characterising the system under study to find

unknown mapping or dependencies between the system’s

input and output from the available data. These methods

can be used for engineering applications at low cost and

simple set-up.

There are many applications of data-driven methods in

water-related modeling. Solomatine (2005) and Solomatine

& Ostfeld (2008) reviewed various aspects of data-driven

modeling and computational intelligence methods in water-

related modeling. Standard types of ANN such as multilayer

percepteron and radial bias functions have been success-

fully used in ocean engineering. Jain & Deo (2006) reviewed

the application of ANN in several disciplines in ocean

engineering. They referred to a stock of research studies

reported so far in this area. Mynett (1999) reviewed a

number of issues in information technology such as ANN

and self-organising feature maps (SOFM) at Delft Hydrau-

lics. Zijderveld (2003) investigated a number of neural

network applications for prediction and classification tasks

in the hydroinformatics context.
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Forecasting of wave parameters at the desired location

directly from wave records was carried out by several

authors. Some recent works related to wave predictions are

from Deo et al. (2001), Agrawal & Deo (2002), Makarynskyy

(2004), Mandal & Prabaharan (2006) and Zamani et al.

(2008). These papers describe various types of neural

networks such as feed-forward or recurrent networks in

different observation areas.

Deo et al. (2001) demonstrated the use of neural

networks for wave forecasting for three different sets of

data. It shows that a proper trained network could yield

good results in open wider areas, in deep water. Agrawal &

Deo (2002) forecasted wave heights with a lead time of a few

hours, days or weeks using autoregressive neural networks.

They compared their results with the traditional time series

schemes of AR, ARMA and ARIMA. It was found that,

when small forecasting intervals were involved, the neural

networks gave more accurate results. Makarynskyy (2004)

predicted significant wave heights and periods with lead

times of 1–24h with the help of NN using some novel

schemes like the merger of initial forecasts with measure-

ments. Londhe & Panchang (2006) examined a modeling

strategy that predicts wave heights up to 24h on the basis of

judiciously selected measurements over the previous 7 d.

They used data from six National Data Buoy Center

(NDBC) buoys with diverse geographical and statistical

properties. They showed that 6 h forecasts can be obtained

with a high level of fidelity, and forecasts up to 12h showed

a correlation of 0.67 or better relative to a full year of data.

Mandal & Prabaharan (2006) forecast significant wave

heights with the recurrent neural network. They used a

three-layer feed-forward recurrent network with eight

inputs and one output. They showed a correlation coeffi-

cient of 0.95, 0.90 and 0.87 for 3h, average 6 h and average

12h wave forecasting, respectively. Zamani et al. (2008)

presented a number of data-driven models for wind-wave

processes at the Caspian Sea. The problem associated with

these models is to forecast significant wave heights for

several hours ahead using buoy measurements. Models are

based on Artificial Neural Network (ANN) and Instance-

Based Learning (IBL). Three feed-forward ANN models

have been built for time horizons of 1, 3 and 6h with

different inputs. The inputs consist of the wind characte-

ristics and a priori knowledge of significant wave height.

The other models are based on the IBL method for the same

forecast horizons. Weighted k-Nearest Neighbors (k-NN)

and Locally Weighted Regression (LWR) with Gaussian

kernel were used.

Altunkaynak & Ozger (2004) forecast significant wave

heights through Kalman filtering where the parameters

were obtained from percepteron. Percepterons are the

simplest form of artificial neural network without any

hidden layer and linear transfer function. The input of their

network is wind speed and significant wave height at time t

and the output of their network is the same parameters at

the next time step. The authors have mentioned the

restriction of uses of regression methods for predicting

wind generated waves and have compared it with the

perceptron Kalman filter. They used one-month hourly

buoy data which is located in Coos Bay, Oregon, USA. The

transition matrix elements in their work are taken as modes

of weights that are calculated by the perceptron model

during the 15 d training period.

In other research, an attractive combination of dynamic

neural network with EnKF was proposed and carried out by

Aguilar et al. (2006) and Aguilar (2006). Discharge and

water level forecasting has been an essential part of flood

forecasting systems and river basin engineering. In their

research, an artificial neural network is used to replace the

numerical hydraulic model and then the data assimilation

technique is implemented to use the measurement available

to improve the one hour forecast at the location of interest.

Hourly discharge and water level at eight stations along the

Rhine River were used for implementation of the combined

method. Two different neural network architects with three

layers were used for the functional relationship of discharge

and water level. Considering the water level and discharge

as system states, their network relates the states at time t to

the time at the next time step.

The combination of ANN and sigma-point Kalman filter

was investigated by Lu et al. (2007). In order to address the

highly nonlinear dynamics in estuary flow, they proposed a

data assimilation system based on components designed to

accurately reflect nonlinear dynamics. The core of the

system is a sigma-point Kalman filter coupled to a fast

neural network emulator for the flow dynamics. In order to

be computationally feasible, the entire system was operated

on a low-dimensional subspace obtained by principal
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component analysis. Experiments on a benchmark estuary

problem showed that this method can significantly reduce

prediction errors.

Although the neural network and other data-driven

models are used for forecasting of wave parameters, there is

no attempt at application of the combined method in the

field of wind-wave modeling. In the present study a

recurrent dynamic neural network with nonlinear transfer

function and a nonlinear data assimilation scheme such as

EnKF will be used. In this case the ANN emulates the

physical relationship between wind and wave by recog-

nition of patterns in the data presented to the network. This

ANN is fast but may deteriorate with time. To correct the

dynamic behavior of the system, ensemble-based data

assimilation is applied. To achieve the required accuracy,

often the ensemble size has to be large. Fortunately the

ANN is fast and it can be used in combination with EnKF

which needs many runs of the dynamic model during each

time step of the assimilation.

The structure of the present paper is as follows. The

ANN set-up and its training is given first. Some conside-

ration regarding the selection of inputs for the model is also

addressed. The concept of data assimilation and the EnKF

algorithm are explained and the combined formulation of

the problem will be presented. The assumption on system

noise and its estimation is presented as well. In the next

section, the type of observations, their duration and the

locations of the measurements will be specified. The result

of the combined method is presented for wind-wave

forecasting. Finally, a conclusion is made at the end to

point out the direction for future research.

ANN SET-UP AND TRAINING

A system of simple processing elements, neurons, that are

connected into a network by a set of (synaptic) weights is

called a neural network. An objective of ANN is to imitate

some of the functions of the human brain. An ANN is

normally used to map a random input vector with the

corresponding output vector. The physics of the underlying

system need not be known beforehand and, unlike the

statistical methods, the network does not need mathe-

matical assumptions a priori. This feature makes ANN a

suitable tool to approximate nonlinear function relation-

ships without a pre-existing model and without, or with

only a little, knowledge about the physics of the system.

For data assimilation purposes, a model which evolves

in time is required. Looking to the wind-wave process as a

dynamic system, the state of the system (wave height) at

time t depends on the system’s state in one or more

preceding time steps as well as the present or preceding

forcing of the system (wind speed and direction). To

account for such a temporal evolution, the dynamic model

must be used in ‘state-space’ form. Such a state-space form

can be achieved by the design of the recurrent network. This

network makes it possible to include time-delay behavior

into the model.

In building the network, time lags should be specified

properly. Usually, not all the input variables will be equally

informative. Often a method based on linear cross-corre-

lation is employed for selecting appropriate inputs. The

major disadvantage associated with using cross correlation

is that it is only able to detect linear dependences between

two variables. Another method is Average Mutual Infor-

mation (AMI). This method was used in the present work

for determination of the inputs of the recurrent network.

AMI measures the dependence between two random

variables. The AMI function between two random variables

A and B is given by

AMIðA;BÞ ¼
XN
i;j

PA;Bðai;bjÞ
*log2

PA;Bðai;bjÞ

PAðaiÞPBðbjÞ

" #
ð1Þ

where ai and bj are the ith or jth bivariate sample pair in a

sample size N and PA(ai), PB(bj) and PA,B(ai, bj) are the

respective univariate and joint probability densities esti-

mated at the sample data points. Mutual information

measures the information that A and B share. It measures

how much knowing about one of this variables reduces our

uncertainty for other variables.

An AMI criterion is able to adequately capture all the

linear and nonlinear dependency between the variables

and avoids the need for making any major assumption to

the underlying model structure. More information about

input determination of networks could be found in Bowden

et al. (2005). They reviewed several methods for input
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determination of neural network models in water resource

applications.

The ANN model used in this study is a three-layer feed-

forward network with feedback from the output to input

layer. Based on an AMI analysis which is similar to the

work of Zamani et al. (2008), the following ANN is built:

hðtkþ1Þ ¼ f
h
hðtkÞ;hkðtk21Þ;Uðt2 1Þ;Uðt2 2Þ; … ;

Uðt2 7Þ; �Q
i ð2Þ

where t is the discretized time, h the wave height, f the

model’s function, W the wind speed and �Q is the average

wind direction for a time span which has been already

included in the model. The lag time corresponding to

maximum AMI is about 4h. Also the AMI between wind

and wave is close to the maximum value for lag times

between 1 and 7h. Although there is no maximum point for

AMI of wind and wave but, due to high AMI values at times

t and t 2 1, they can be used for model building.

The ANN architecture with ten neurons in the input

layer and one neuron at the output layer has been used

throughout in this study. Also the optimal size of the hidden

layer was found by systematically increasing the number of

hidden neurons until the network performance on the test

set did not improved significantly. In this simulation the

hyperbolic tangent function and the identity function have

been used as transfer functions in the hidden and output

layers, respectively. This combination of activation func-

tions is recommended for function approximation problems

(Bishop 1995). Results showed that there is no longer any

improvement in the performance of the model for more

than five hidden neurons.

ENSEMBLE KALMAN FILTER

In some situations models may not perform perfectly

because of unresolved physics in the model, errors in

boundary conditions, errors in forcing and also errors in

some model parameters. Due to these uncertainties in the

model, there will be a difference between model outputs and

actual observed data. Data assimilation schemes exploit

such a difference to correct the model. The Kalman filter

is the well-known data assimilation scheme which was

originally introduced by Kalman (1960) for linear systems.

The detailed theoretical background of Kalman filtering for

linear systems, and its extension to nonlinear systems, is

given by Jazwinski (1970).

This section will briefly review the mathematical

formulation of EnKF for nonlinear systems. This scheme

was introduced by Evensen (1994) and has been successfully

implemented and used in different types of applications

(Evensen 2003). The EnKF is a Monte Carlo approach based

on the representation of the probability density of the state

estimate by a finite number of randomly generated system

states.

Consider the system of a general, nonlinear stochastic

model M and the observations

xfðtkÞ ¼ M½xfðtk21Þ;Uðtk21Þ� þwðtk21Þ ð3Þ

yoðtkÞ ¼ HðtkÞx
fðtkÞ þ vðtkÞ ð4Þ

where xfðtkÞ [ R
n denotes the forecast of the system state at

time tk, U(tk) is the forcing of the system and M represents

one time step of the model. A normal distributed system

noise wðtkÞ [ R
n;wðtkÞ , Nð0;QÞ is introduced to take the

uncertainties of the model into account. The vector yo [ R
r

represents the measurements, which are supposed to be a

linear combination of the states represented by the operator

H. The observation noise is represented by vðtkÞ , Nð0;RÞ.

In order to obtain an optimal estimate it is necessary to

combine the measurement taken from the actual system and

modeled by Equation (3) with the information given by the

system model (Equation (2)). The forecast state at time tk,

denoted by x f(tk), is the forecast from observation time tk-1

to observation time tk by the Equation

xfðtkÞ ¼ M
h
xaðtk21Þ;Uðtk21Þ

i
ð5Þ

where x a(tk21) is the analyzed system state. At time tk, an

observation y o(tk) is available and the estimate is updated

by the analysis step:

xaðtkÞ ¼ xfðtkÞ þK
h
yoðtkÞ2HðtkÞx

fðtkÞ
i

ð6Þ

where

KðtkÞ ¼ PfðtkÞHðtkÞ
T HðtkÞP

fðtkÞHðtkÞ
T þR

h i21
ð7Þ
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is the minimum variance gain and P f(tk) is the forecast error

covariance matrix. In the EnKF method, the covariance can

be calculated by a finite number of randomly generated

system states.

For the initial state estimate x0, the uncertainty is

expressed by an ensemble jai , i ¼ 1,… ,N of randomly

generated states. The ensemble members are propagated

from one time step to another using the original model

operator:

j
f
iðtkÞ ¼ M jai ðtk21Þ;Uðtk21Þ

� �
þwiðtk21Þ ð8Þ

with wi(tk) realizations of the noise process w(tk). Noise is

added to the most uncertain parts of the model to estimate

the covariance between observations and the model

variables. The ensemble mean

�xfðtkÞ ¼
1

N

XN
i¼1

j
f
iðtkÞ ð9Þ

represents the state estimate at time tk. Using this estimate

the error covariance can be computed as

E f;ENðtkÞ ¼ j
f
1ðtkÞ2 �x fðtkÞ; … ; j

f
NðtkÞ2 �x fðtkÞ

h i
ð10Þ

PfðtkÞ ¼
1

N 2 1
Ef;ENðtkÞ Ef;ENðtkÞ

h iT
ð11Þ

With the error covariance P f calculated, the Kalman gain

K(tk) is obtained from Equation (7). The update equations

for the analyzed ensembles are

j a
i ðtkÞ ¼ j

f
iðtkÞ þKðtk yoðtkÞ2HðtkÞj

f
iðtkÞ þ viðtkÞ

h i
ð12Þ

where vi(tk) represents realizations of the measurement

noise v(tk).

COMBINATION OF ANN AND ENKF

In the combined method, the output of the ANN will be

considered as state vectors. The trained network acts as a

deterministic model. Process noise is added to this model to

prepare the stochastic model:

hðtkÞ ¼ f
h
hðtk21Þ; hðtk22Þ; ;U ðtkÞ;U ðt 2 1Þ;

i
þwðtkÞ

ð13Þ

A successful state estimation requires a well-designed

process noise model and a well-designed measurement

noise model. We assume that errors of a trained network

are time-independent, zero mean and Gaussian-distributed.

The difference between outputs of ANN and targeted

values are used as an indication of system error. The

covariance matrix Q can be estimated from the residual of

ANN predictions:

Q ¼ a
1

Nt

XNt

k¼1

h
hðtkÞ2 ĥðtkÞ

i2
ð14Þ

where Nf is the number of time steps used for covariance

matrix estimation and ĥðtkÞ is the true wave height. Also a

is a tuning factor which can be found by trial and error.

Based on the buoy measurement techniques, the measure-

ment error and its covariance matrix are taken. Here the

wave height measurements are used to correct the states.

By help of the observations, the EnKF will correct the

output of the ANN to find the best estimate of the system

(or analyzed state). The analyzed state will return to the

inputs of the ANN for the next time step.

In the inputs of the ANN, there is a difference between

the inputs of the network which comes from forcing or from

the feedback loop. One should carefully note that the inputs

of the EnKF are different from the inputs of the ANN. The

above procedure can work without observation as well. In

this case the recursive application of the method leads to

prediction at higher forecast horizons.

To deal with the time-delayed states in Equation (13),

the Kalman filter formulation proposed byGibson et al. (1991)

is employed and an extended vector is taken as follows:

xfðtkÞ ¼
h
hðtkÞ;hðtk21Þ;…

iT
ð15Þ

Using the extended vector allows us to write a dynamic

state space model in the standard form. After each new

measurement, the state vectors will be updated for all

ensembles by using Equation (12), Kalman gain Equation

(7) and error covariance matrix Equation (11).
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OBSERVATION AND STUDY AREA

In the present study, input–output patterns for training of

network are from a measurement site in the southern part of

the Caspian Sea. One hourly wind speed, wind direction

and significant wave height are deduced from a discus wave

buoy. The depth of the measurement site was 800m and the

period of data collection was 5 months ranging from 11

October 2006 to 2 May 2007. Fortunately, during these

periods the buoy collected data continuously and without

any gaps in the transmitting of data. Wave data was

collected for 20min at 1h intervals at a sampling frequency

of 2Hz. Wind data was also collected for 10min at 1 h

intervals at a sampling frequency of 2Hz. Figure 1 shows

the measured significant wave height and wind speed at the

site of the study. The total number of datasets is 4,800.

RESULTS

It is difficult to know which training algorithm will be

suitable for the given problem. Therefore it is necessary to

examine several training methods. The supervised algo-

rithms were tested in this research are the quasi-New-

ton(QN), back propagation with variable learning rate and

momentum (BPvm), resilient back propagation (RBP),

conjugate gradient (CG) and Levenberg–Marquardt (LM).

Table 1 shows the one-step-ahead forecast performance in

terms of Root Mean Square Error (RMSE) along with the

number of epochs. The limiting criterion was to reach the

threshold of 0.01m in mean square error of the cost

function. Because of its lower RMSE and the moderate

epochs of LM, this method was chosen for the reminder of

the study.

The data was divided into two parts in such a way that

both blocks of data would have extreme events of similar

nature. For all the experiments the 400 latest observations

were selected for testing the models, and the rest of the

data was used for their training. This ensured both blocks

have at least one extreme event.

The training interval includes 4,400 data values. In spite

of the well-trained network, the ANN could not predict the

wave height in the test period. To show this issue, it is

supposed that we have an exact wind forecast during the

test period. Results from running this dynamic model based

on wind forcing and also using a one-step forecast are

illustrated in Figure 2. In this run, no assimilation of data

Figure 1 | Time series plot for 1,500 h of data points. Upper panel: significant wave

height (m), lower panel: wind speed (m/s).

Table 1 | Indication of predictive dynamic model using various training methods

Algorithm RMSE (m) Epochs

QN 0.098 769

BPvm 0.090 2,500

RBP 0.093 2,500

CG 0.091 400

LM 0.085 317

Figure 2 | Simulation without data assimilation and with data assimilation using EnKF

and 10 ensembles.
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has been used and the output of the network was fed into

the input in a recursive manner.

In order to consider the effect of assimilation, the result

of another run with EnKF assimilation is shown on the

same figure. The new run is based on 10 ensemble members

and an assimilation–forecast cycle for one hour. The effect

of data assimilation can clearly be inferred from this figure.

Although it is possible to use wave height measurements as

the input to the network, it is not helpful in the case of noisy

measurements. As a well-trained network will follow all

changes of input patterns, therefore, in the case of noisy

input data, the network output would also be a noisy one.

Using a few neurons in the hidden layer may tend to smooth

out variations in the dependency structure between the

input and output but this was not the suitable solution to

this study. Forecast results using a direct assimilation of

noisy measurements into the ANN is shown in Figure 3. In

this experiment, at each time step the execution of the

network is interrupted and the exact measurement of

wave height is fed to the input of the network. These

Figure 3 | Direct assimilation of data in ANN input.

Figure 4 | Wave height for 1 h forecast/assimilation cycle with 5 ensembles.

Figure 5 | Innovations for time series plot of Figure 4.

Figure 6 | Wave height for 1 h forecast/assimilation cycle with 10 ensembles.
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measurements are noisy and they will cause the fluctuation

in the prediction of wave height. The ANN mimics the

behavior of noise while, on the other hand, the combined

method is more robust.

To find the effect of ensemble members the dynamic

model is run with different numbers of ensembles. Also it is

possible to check filter performance by calculating the so-

called innovation and plotting them along with their

standard deviations.

Figures 4–9 indicate the role of increasing the number

of ensembles and its effect on the innovation. In all

experiments a 1h forecast–assimilation cycle has been

selected with 5, 10 and 50 numbers of ensembles. Figure 4

shows the 1h forecast using 5 ensembles. In this figure,

there is a large amount of error, especially in the region of

extreme events. Figure 5 indicates the innovation based on

the results of Figure 4. One can conclude that filter

performance is not on a satisfactory level and innovations

are not bound by their standard deviations with 5

Figure 7 | Innovations for time series plot of Figure 6.

Figure 8 | Wave height for 1 h forecast/assimilation cycle with 50 ensembles.

Figure 9 | Innovations for time series plot of Figure 8.

Figure 10 | Four hour forecast of significant wave height with 1h data assimilation

and 50 ensembles.
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ensembles. Increasing the number of ensembles, as indi-

cated in Figures 6 and 8, will improve the prediction results.

As is shown in Figures 8 and 9, innovations are almost

entirely bounded by their standard deviations for higher

numbers of ensembles. Increasing the number of ensembles

will increase computational cost but it will create some

acceptable results.

Forecasts for higher horizon times can be achieved by

implementing the procedure for different assimilation–

forecast cycles. The cycle has the following structure. At

each time, a run is performed which consists of an analysis

over the previous period in which the observation is

assimilated followed by the forecast for the selected time

horizon. The initial condition for each run is supplied by

the previous analysis and for the beginning of the procedure

the initial condition can be set to zero. Results of 4 h

forecast and 1h data assimilation is shown in Figure 10.

Also the prediction of 6h forecast and 1h assimilation

cycle is shown in Figure 11. Comparison of Figures 10

and 11 shows the increasing errors due to the higher

forecast horizon.

The coefficient of performance can be used to measure

the performance of the combined ANN and EnKF method:

Ce ¼ 12

PN
i¼1 ðhi 2 ĥiÞ

2PN
i¼1 ðhi 2 �hÞ2

ð16Þ

This coefficient is also called the Nash–Sutcliffe

coefficient, which is used to assess the predictive power of

the hydrologic models (Nash & Sutcliffe 1970). In Equation

(16), Ce is the coefficient of performance,N is the number of

samples in the test period and �h is the average of the true

wave heights.

Figure 12 shows the performance of the method for

different forecast horizons and different numbers of

ensembles in terms of the coefficient of performance. Also

Figure 11 | Six hour forecast of significant wave height with 1 h data assimilation and

50 ensembles.

Figure 12 | Coefficient of efficiency for different forecast horizons and different

numbers of ensembles. Figure 13 | RMSE for different forecast horizons and different numbers of ensembles.
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Figure 13 indicates the RMSE error for the same forecast

horizons and number of ensembles. As can be seen from the

figures, the efficiency and RMSE error of the model is

reasonable for forecast horizons up to 6h as, for higher

forecast horizons, the RMSE grows rapidly.

CONCLUSION AND FUTURE RESEARCH

A wind-wave data assimilation method has been presented

which is based on an Artificial Neural Network and an

efficient low rank approximation of the Kalman filter. The

dynamic equation for the relation between the state vectors

and the forcing of the system is derived from data at the

Caspian Sea. This ANN data-driven dynamic is updated

using new measurements as soon as they are available. The

analyzed or corrected states will then be used for short-term

forecasts of the wind and wave height. The following

conclusions can be deduced according to the experiments

with the combined method:

† The framework of the combined method can be applied

to estimate the state of a complex, nonlinear wind-wave

model. Due to the predictor corrector behavior of the

algorithm, the forecast is more accurate than with the

use of the ANN alone.

† The combined method can be used with noisy data.

Therefore, overfitting of an ANN to noisy patterns can be

reduced.

† The combined scheme is fast and suitable for operational

one-point wind-wave forecasting.

† The performance of the method for different forecast

horizons and different numbers of ensembles indicates

reasonable results for forecast horizons up to 6 h. For

higher forecast horizons the RMSE grows rapidly.

The scheme is more general and extendable to other

problems. For example, one can use the numerical wave

model for preparing a lot of realizations of wind-wave

patterns for the area under study and for preparing a new

ANN which describes both the spatial and the temporal

behavior of wind waves in this area. Then, by help of some

observations, the state which consists of wind waves in

various locations can be modified sequentially.

The combination method led us to build a portable data

assimilation method for different types of large scale

problems in wind-wave hindcast and forecast studies. The

ANN has the ability to emulate a numerical model through

the recognition of patterns in the data presented to the

networkand thecombinationwith theEnKFwill improve the

ANN prediction. The combination will reduce the compu-

tational burden of applying the EnKF to the numericalmodel

itself. A subject that will be addressed in a future paper is the

use of simulation results of a full numerical wave model

running at the Caspian Sea and the combined method as

described in this paper. The full numerical model can be

replaced with the ANN surrogate model. Surrogate

models (or emulators or meta-models) are approximate

models that mimic the behavior of large scale models as

closely as possible while being computationally cheap.

Also, in order to be computationally feasible, the entire

system operates on a low-dimensional subspace obtained

by principal component projection of wave and wind fields.

The ANN surrogate describes both the spatial and the

temporal behavior of the wind waves in this area. The

surrogate is updated using new observations as soon as they

are available. The analyzed or corrected states will then be

used for the next forecast of the wave field. In the context of

data assimilation, accelerating the simulation of the

dynamics of the system via the surrogate successfully

reduces the time needed to propagate the ensemble

forecasts.
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